High-performance Universal Joint Shafts
including ATEX certification

Series: S, R, CH, E
Instruction manual (Translation) G853 en 07/2013, Version 1
If you have questions regarding the product, please contact us specifying the serial number and parts list number:

J.M. Voith SE & Co. KG/VTA
Universal Joint Shafts
Alexanderstr. 2
89522 Heidenheim, Germany

Additional contact information:
Telephone +49 7321 37-8283
Fax +49 7321 37-7106
E-Mail UJShafts@Voith.com
Web www.voith.com
Table of contents

1 About this instruction manual .. 7
 1.1 Target groups ... 7
 1.2 Product observation ... 7
 1.3 Other applicable documents ... 8
 1.4 Additional documents .. 9
 1.5 Symbols and markings ... 10
 1.6 Warning ... 11
 1.6.1 Levels of danger .. 11
 1.6.2 Safety symbols .. 12

2 Basic Safety Information ... 13
 2.1 Product safety ... 13
 2.2 Proper use ... 13
 2.3 Remaining risks ... 14
 2.4 Safety information for the operator .. 15
 2.5 Safety information for the personnel .. 17
 2.6 Personal protective equipment ... 21
 2.7 Spare parts .. 21

3 High-performance Universal Joint Shafts ... 22
 3.1 Structure .. 22
 3.2 Application .. 25
 3.3 Series .. 26
 3.3.1 Type designations ... 26
 3.3.2 S Series ... 27
 3.3.3 R Series ... 27
 3.3.4 CH Series ... 28
 3.3.5 E Series ... 28

4 Packaging, transport ... 29
 4.1 Packaging .. 29
 4.2 Unpacking the universal joint shaft and checking the delivery .. 29
 4.3 Lifting, transporting, setting down the universal joint shaft .. 30
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage and preservation</td>
<td>33</td>
</tr>
<tr>
<td>5.1 Storing the universal joint shaft</td>
<td>33</td>
</tr>
<tr>
<td>5.2 Preserving the universal joint shaft</td>
<td>34</td>
</tr>
<tr>
<td>Installation</td>
<td>35</td>
</tr>
<tr>
<td>6.1 Additional regulations for flange bolted connections</td>
<td>35</td>
</tr>
<tr>
<td>6.1.1 Requirements of connecting flange and bolted connections</td>
<td>35</td>
</tr>
<tr>
<td>6.1.2 Checking bolted connections and tightened parts</td>
<td>41</td>
</tr>
<tr>
<td>6.2 Installing the universal joint shaft</td>
<td>42</td>
</tr>
<tr>
<td>6.2.1 Removing preservation</td>
<td>44</td>
</tr>
<tr>
<td>6.2.2 Transport universal joint shaft to the installation location</td>
<td>44</td>
</tr>
<tr>
<td>6.2.3 Cleaning the universal joint shaft and connecting flange</td>
<td>45</td>
</tr>
<tr>
<td>6.2.4 Checking, aligning, and fastening connecting flange</td>
<td>45</td>
</tr>
<tr>
<td>6.2.5 Checking the differential angle of the front faces of the connecting flange (with Z arrangement)</td>
<td>46</td>
</tr>
<tr>
<td>6.2.6 Checking the differential angle of the front faces of the connecting flange (with W arrangement)</td>
<td>47</td>
</tr>
<tr>
<td>6.2.7 Bolting together the universal joint shaft and the connecting flange</td>
<td>47</td>
</tr>
<tr>
<td>6.2.8 Final work</td>
<td>48</td>
</tr>
<tr>
<td>6.3 Additional regulations for Hirth serration</td>
<td>49</td>
</tr>
<tr>
<td>6.4 Additional regulations for use in paper machines</td>
<td>50</td>
</tr>
<tr>
<td>Commissioning and operation</td>
<td>51</td>
</tr>
<tr>
<td>7.1 Commissioning the universal joint shaft</td>
<td>51</td>
</tr>
<tr>
<td>7.2 Operating the universal joint shaft</td>
<td>52</td>
</tr>
<tr>
<td>Eliminating errors</td>
<td>53</td>
</tr>
<tr>
<td>Maintenance</td>
<td>55</td>
</tr>
<tr>
<td>9.1 General notes about the maintenance and inspection of universal joint shafts</td>
<td>56</td>
</tr>
<tr>
<td>9.2 Intervals for maintenance and inspections</td>
<td>57</td>
</tr>
<tr>
<td>9.3 Inspections</td>
<td>58</td>
</tr>
<tr>
<td>9.3.1 Checking axial clearance of the journal cross set</td>
<td>58</td>
</tr>
<tr>
<td>9.3.2 Checking deflection play of the center part</td>
<td>59</td>
</tr>
<tr>
<td>9.4 Lubrication</td>
<td>61</td>
</tr>
<tr>
<td>9.4.1 Lubricants</td>
<td>61</td>
</tr>
<tr>
<td>9.4.2 Lubricating the universal joint shaft</td>
<td>61</td>
</tr>
<tr>
<td>9.5 Main overhaul</td>
<td>64</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>9.6</td>
<td>Life span of ATEX universal joint shafts</td>
</tr>
<tr>
<td>10</td>
<td>Removal</td>
</tr>
<tr>
<td>11</td>
<td>Repair</td>
</tr>
<tr>
<td>12</td>
<td>Disposal</td>
</tr>
<tr>
<td>13</td>
<td>Declaration of incorporation</td>
</tr>
<tr>
<td>14</td>
<td>Declaration of conformity</td>
</tr>
<tr>
<td>15</td>
<td>Index</td>
</tr>
</tbody>
</table>
List of figures

Fig. 3.1: Structure of the universal joint shaft (example of type RT) .. 22
Fig. 3.2: Nameplate of an ATEX-certified universal joint shaft .. 23
Fig. 3.3: Schematic structure of temperature monitoring .. 24
Fig. 3.4: Z arrangement ... 25
Fig. 3.5: W arrangement ... 25
Fig. 4.1: Attaching the universal joint shaft ... 32
Fig. 6.1: Dimensions of the connecting flange and bolted connections .. 36
Fig. 6.2: Dimensions of a stud screw ... 41
Fig. 6.3: Universal joint shaft .. 44
Fig. 6.4: Checking the difference in joint angle between the faces of the connecting flanges 46
Fig. 6.5: Permissible differential angle (with Z arrangement) .. 46
Fig. 6.6: Seals for Hirth serration .. 49
Fig. 6.7: Checking radial offset and flange distance (with use in paper machines) 50
Fig. 9.1: Checking axial clearance of the journal cross set on two levels ... 58
Fig. 9.2: Checking deflection play of the center part ... 59
Fig. 9.3: Reading off deflection dimension ... 60
Fig. 9.4: Lubrication points of the universal joint shaft .. 62

Table index

Tab. 1.1: Target groups .. 7
Tab. 1.2: Other applicable documents ... 9
Tab. 1.3: Symbols and markings ... 10
Tab. 1.4: Meaning of the danger levels .. 11
Tab. 1.5: Meaning of the safety symbols ... 12
Tab. 2.1: Personal protective equipment .. 21
Tab. 6.1: Dimensions of the connecting flange and bolted connections 37
Tab. 6.2: Dimensions of the connecting flange and bolted connections (key) 40
Tab. 6.3: Permissible differential angle (with Z arrangement) ... 46
Tab. 6.4: Permissible differential angle (with W arrangement) ... 47
Tab. 6.5: Permissible radial offset and flange distance (for use in paper machines) 50
Tab. 8.1: Eliminating errors .. 54
Tab. 9.1: Intervals for maintenance work and inspections ... 58
Tab. 9.2: Checking axial clearance of the journal cross set ... 59
Tab. 9.3: Permissible deflection ratio ... 60
Tab. 9.4: Permissible lubricant quantity for the re-lubrication of standard center parts 64
1 About this instruction manual

Before you use the universal joint shaft, you must read this instruction manually carefully and understand it.

This instruction manual is part of the product and familiarizes you with the basic work on the universal joint shaft – from installation to disposal.

It contains information about the safe and proper use of the universal joint shaft.

1.1 Target groups

<table>
<thead>
<tr>
<th>Target group</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>➔ Keep this instruction manual accessible to personnel at all times.</td>
</tr>
<tr>
<td></td>
<td>➔ Make sure that employees read and heed the instruction manual and the other applicable documents, especially the basic safety instructions and warnings.</td>
</tr>
<tr>
<td></td>
<td>➔ Heed additional system-related details and regulations.</td>
</tr>
<tr>
<td>Specialized personnel, service</td>
<td>➔ Read, heed, and follow this instruction manual and the other applicable documents, especially the basic safety instructions and warnings.</td>
</tr>
<tr>
<td>engineer</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1.1: Target groups

1.2 Product observation

We are under legal obligation to observe our products, even after shipment.

➔ Therefore, please inform us about anything that might be of interest, e.g.:

- Change in operating data
- Experience gained with the universal joint shaft
- Recurring problems
- Damage to the universal joint shaft
- Problems with the instruction manual
1.3 Other applicable documents

<table>
<thead>
<tr>
<th>Document</th>
<th>Information</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents for all designs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System documentation</td>
<td>• System-specific information about the removal and installation of the universal joint shaft.</td>
<td>Operator</td>
</tr>
</tbody>
</table>
| Dimensional drawing of the universal joint shaft | • Dimensions of the connection flange.
• Tightening torques of the bolted connections of the flange connections.
• Weight of the universal joint shaft.
• Shortest and maximum permissible length of the universal joint shaft. | J.M. Voith SE & Co. KG/VTA |
| Delivery note | • Weight of the universal joint shaft | J.M. Voith SE & Co. KG/VTA |
| Repair instructions for the respective designs and sizes | For the manufacturer's authorized service personnel:
• Information about repair of the universal joint shaft | J.M. Voith SE & Co. KG/VTA |
| Balancing instruction | For the manufacturer's authorized service personnel:
• Information about the balancing of the universal joint shaft | J.M. Voith SE & Co. KG/VTA |
| **Documents for special designs** | | |
| Mounting and dismounting instructions for split flange yokes | For designs with split flange yokes:
• Information about installing and removing the universal joint shaft | J.M. Voith SE & Co. KG/VTA |
| Mounting and dismounting instructions for tripod center parts | For designs with tripod center parts:
• Information about installing and removing the universal joint shaft | |
| Mounting and dismounting instructions for spring-mounted center parts | For designs with spring-mounted center part:
• Information about installing and removing the universal joint shaft | J.M. Voith SE & Co. KG/VTA |
| Mounting and dismounting instructions for hydraulically-movable center parts | For designs with hydraulic center part:
• Information about installing and removing the universal joint shaft | J.M. Voith SE & Co. KG/VTA |
|---|---|---|
| Mounting and dismounting instructions for deflection brakes | For designs with deflection brake:
• Information about installing and removing the universal joint shaft | J.M. Voith SE & Co. KG/VTA |
| Mounting and dismounting instructions for shaft angle limiters | For designs with shaft angle limitation:
• Information about installing and removing the universal joint shaft | J.M. Voith SE & Co. KG/VTA |
| Mounting and dismounting instructions for quick-release couplings | For designs with quick-release coupling:
• Information about installing and removing the universal joint shaft | J.M. Voith SE & Co. KG/VTA |

Tab. 1.2: Other applicable documents

1.4 Additional documents

For additional information about the universal joint shafts, please see the following documents:

- High-performance universal joint shafts catalogue
- General delivery conditions
- Hirth serrations

Order from: UJShafts@Voith.com
1.5 Symbols and markings

Symbols and markings are used in this instruction manual in order to allow you quick access to information.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Note about the effective use of the universal joint shaft and this instruction manual</td>
</tr>
<tr>
<td>🔄</td>
<td>Note for ATEX certified universal joint shafts</td>
</tr>
</tbody>
</table>

1. Action with several steps, whose sequence is relevant
2.
3.

พอใจ | Action with one step
–or–
Action with several steps, whose sequence is not relevant

✔ | Prerequisite

• | List (first level)
– | List (second level)

➡ | Cross-reference to additional information

Tab. 1.3: Symbols and markings
1.6 Warning

For your safety, warnings are used in this instruction manual. The warnings are next to the appropriate action instruction. Depending on the likelihood of occurrence and consequences if the instructions are not heeded, various danger levels are used. The warnings are indicated with safety symbols, which depict the type of danger visually.

1.6.1 Levels of danger

<table>
<thead>
<tr>
<th>Level of danger</th>
<th>Likelihood of occurrence</th>
<th>Consequences if not heeded</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶️ DANGER</td>
<td>Imminent danger</td>
<td>Death, severe bodily harm</td>
</tr>
<tr>
<td>▶️ WARNING</td>
<td>Possible imminent danger</td>
<td>Death, severe bodily harm</td>
</tr>
<tr>
<td>▶️ CAUTION</td>
<td>Possible imminent danger</td>
<td>Slight bodily harm</td>
</tr>
</tbody>
</table>

Tab. 1.4: Meaning of the danger levels
1.6.2 Safety symbols

<table>
<thead>
<tr>
<th>Safety symbols</th>
<th>Warning about</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Exclamation mark]</td>
<td>General dangers</td>
</tr>
<tr>
<td></td>
<td>The type of danger is described in more detail in the warning.</td>
</tr>
<tr>
<td>![Hand and arrow]</td>
<td>Crushing</td>
</tr>
<tr>
<td>![Hand and arrow]</td>
<td>Hand injuries</td>
</tr>
<tr>
<td>![Hand and arrow]</td>
<td>Slipping</td>
</tr>
<tr>
<td>![Hand and arrow]</td>
<td>Rotating parts</td>
</tr>
<tr>
<td>![Hand and arrow]</td>
<td>Falling parts</td>
</tr>
<tr>
<td>![Hand and arrow]</td>
<td>Suspended loads</td>
</tr>
<tr>
<td>![Flame]</td>
<td>Flammable materials</td>
</tr>
<tr>
<td>![Acidic]</td>
<td>Acidic materials</td>
</tr>
<tr>
<td>![Poison]</td>
<td>Poisonous materials</td>
</tr>
<tr>
<td>![Flame]</td>
<td>Danger of explosion</td>
</tr>
</tbody>
</table>

Tab. 1.5: Meaning of the safety symbols
2 Basic Safety Information

Please heed the following safety information before engaging in any activities.

2.1 Product safety

The universal joint shaft has been developed and built according to the state of technology as well as the applicable safety regulations at the time it was put on the market.

Nevertheless, its use can result in danger to life and limb of the user or damage to the universal joint shaft itself and other property.

- Only install the universal joint shaft if it is in proper condition and only for the designated use, in a safety-conscious manner that complies with the instruction manual.

- Immediately correct (or have corrected) any defects that adversely affect safety.

2.2 Proper use

Universal joint shafts transmit torques between defined drive and machine components. Therefore, the universal joint shaft is intended for installation in the specific machine/system for which it was selected.

Any other use, especially installation in other machines, is not proper and forbidden.

Voith universal joint shafts are not approved for use in the food industry.

In liquid media, universal joint shafts may only be used with written permission of the manufacturer.

The universal joint shaft type we make and size can only be regarded as recommendations.

Any improper use or activities on the universal joint shafts not described in this instruction manual are impermissible misuse outside of the legal liability limits of the manufacturer.

Foreseeable misuse

Heed the following measures to avoid misuse:

- Only operate the universal joint shaft within the specified speed and torque range.
Universal joint shafts are resiliently-flexible bodies that are designed for bending vibrations and bending-critical speeds. Therefore, for safety reasons, the maximum operating speed must be significantly below the critical-bending speed 1st and 2nd order (see universal joint catalog G830).

For sufficient balance and security for the universal joint shaft, it must be ensured that the operating speed does not exceed the maximum permissible value depending on the shaft angle (see universal joint catalog G830) and that the driving and driven system parts are aligned with one another (plan and concentric run-out see page 40).

Do not exceed permissible shaft angles of the universal joint shaft.

Adhere to the lengths and temperatures specified for the selection of the universal joint shaft.

For universal joint shafts with length compensation, make sure that the maximum permissible movement path is not exceeded.

A local heating of the universal joint shaft, e.g. due to the burning off of old color remnants is not permissible in order to change the run-out properties.

Protect components coated with Rilsan against too-high temperatures, chemical solvents, steam, and mechanical damage.

Attaching parts to the universal joint shaft by welding or other connection types is not permissible.

Adhere to the manufacturer's specifications with respect to operation, maintenance, and repairs.

Have work on universal joint shafts done by the manufacturer or by service technicians authorized by the manufacturer.

Do not make any unauthorized modifications or changes.

In areas subject to explosion (atmosphere), only use ATEX-certified universal joint shafts. Here, heed certification (➔ Chapter 3.1, page 22).

2.3 Remaining risks

Before beginning construction and planning, the remaining risks of the universal joint shaft were analyzed and evaluated.

Remaining risks that could not be avoided during the entire life cycle of the universal joint shafts are:
• Risk of death and injury due to
 − Misuse
 − Improper handling
 − Improper transport
 − Missing protection systems
 − Defective or damaged mechanical parts
• Environmental hazard, e.g. due to
 − Improper handling of preserving agents and lubricants
• Property damage to the universal joint shaft due to
 − Improper handling
 − Hazardous environmental influences, application conditions
 − Operating specifications not adhered to
 − Unsuitable operating materials (e.g. bearing grease)
• Property damage to other assets due to improper handling
• Performance or functional limitations due to
 − Improper handling
 − Improper maintenance or repair
 − Subsequent damage due to overload

Avoid existing remaining risks with the practical implementation and heeding of the following specifications:
• Basic safety instructions and warnings in this instruction manual
• Work instructions from the operator
• Technical data for the system (➔ system documentation)

2.4 Safety information for the operator

⇒ The operator must take appropriate safety precautions in order to prevent the endangering of people and materials due to rotating universal joint shafts and their parts.

⇒ For the operation of the universal joint shaft within a machine, the EU machine directive must be heeded.

Safety-conscious working

⇒ Ensure adherence and monitoring:
 − Of proper use
 − Of laws and regulations for accident prevention and environmental protection
 − Of safety regulations for the handling of hazardous materials
 − Of applicable standards and guidelines for the country of operation
Organizational measures

Make protective equipment available (➔ Chapter 2.6, page 21).

For telescopic lengths without profile guard: provide guard in the system.

Keep this instruction manual and all applicable documents accessible to personnel at all times.

Specify responsibilities of the personnel clearly and monitor adherence.

Selection and qualification of staff

All activities on the universal joint shaft may only be performed by authorized personnel.

Ensure that the staff members

- are at least 18 years old.
- have read and understood the "Basic safety information" chapter.
- can apply and implement the contents of the "Basic safety instructions" chapter.
- have the bodily and mental abilities to perform their responsibilities, tasks, and activities on the universal joint shaft.
- are trained according to their responsibilities, tasks, and activities on the universal joint shaft.
- have understood and can practically implement the technical documentation with respect to their responsibilities, tasks, and activities on the universal joint shaft.
- is familiar with and can apply the components of the system and their function.
- is familiar according to his responsibilities with the instructions for cleaning, preserving, lubricating, and using hazardous materials and taking first aid measures in case of accidents.
2.5 Safety information for the personnel

Safety-conscious working

The consumption of alcohol, drugs, medications or other mind-altering substances is forbidden.

⇒ Protect universal joint shaft against unauthorized operation.

⇒ Adhere to applicable accident prevention regulations.

⇒ If necessary or required by regulations, wear personal protective equipment (⇒ Chapter 2.6, page 21).

⇒ Keep unauthorized personnel out of the danger area of the universal joint shaft.

⇒ Keep safety and notice signs on the universal joint shaft in easily-legible condition, e.g. lubrication points.

⇒ Follow the supervisor or safety officer’s safety and work instructions.

⇒ Only linger in the workplaces provided in the danger area (⇒ system documentation).

⇒ Do not make any constructional changes to the universal joint shaft.

⇒ Handle hazardous materials according to the safety data sheets. Heed safety measures and wear personal protective equipment.

Warranty

⇒ The warranty is voided in case of any change to the universal joint shaft without our written permission.

⇒ During the warranty, obtain the manufacturer’s permission before making repairs to the universal joint shaft.

⇒ Only use original parts or parts approved by the manufacturer.
Lifting, transport, setting down

Depending on the design, universal joint shafts can weigh up to 80 tons.

- Heed weight (⇒ Delivery note/Dimensional drawing of the universal joint shaft).
- Only lift and transport universal joint shafts with sufficiently-dimensioned transport equipment (⇒ Fig. 4.1, page 32).
- Heed common attachment regulations.
- Do not load profile guard.
- Heed the center of gravity (hoist axis).
- Only store universal joint shafts
 - on floors with sufficient load capacity
 - on suitable bases
- Secure universal joint shaft against rolling away.

Only transport universal joint shaft in areas not subject to explosion (atmosphere).

Unsecured universal joints can tip during lifting, transport, setting down.

- Secure universal joints against tipping, e.g. with a suitable rope or wedge.
- Never reach between the universal joint, even if there is a deflection guard present.

For telescopic lengths: an unsecured telescoping part can be pulled apart when lifting, transporting or setting down.

- Secure telescoping part against being pulled apart, e.g. with a suitable rope.

Preservation

Cleansers and anti-corrosion agents are usually flammable in their liquid form.

- Ensure sufficient ventilation.
- Prevent direct bodily contact and inhalation.
- Heed the manufacturer's safety data sheets.

Installation

- Heed additional regulations for flange bolted connections (⇒ Chapter 6.1, page 35).
- Heed safety instructions for lifting, transport, setting down.
- Secure drive against starting up.
Keep personnel who are not participating away, e.g. using supervisory personnel, enclosures, fences.

Only install universal joint shaft in areas not subject to explosion (atmosphere).

For specially-designed universal joint shafts, improper installation and removal can cause severe injuries or even death.

Heed and if necessary order additional documentation (Chapter 1.3, page 8).

Commissioning and operation

Only put a completely functional and safe universal joint shaft/system into operation.

Before commissioning, remove deflection and transport braces.

Before commissioning, check tightening torques and null markings.

Only operate universal joint shaft with appropriate guards (system documentation).

For telescopic lengths: protect gearing of the telescopic parts against dirt and foreign bodies.

In case of changed operating state and faults, take the universal joint shaft out of commission immediately. Report changed operating states and faults to the responsible office/person immediately.

Do not perform cleaning work when operation is ongoing.

If it is not possible to prevent people from lingering in the danger radius of the universal joint shaft while it is in operation, special safety measures must be taken in case of a universal joint shaft break.

If there can be blockages or collisions with resulting personal injury as a result of a universal joint break in the case of mobile drives, appropriate arresting devices must be provided for the universal joint shafts.

In case of ATEX-certified universal joint shafts, it must be ensured that

The surface temperature in the field of joint bearings not exceed 140°C.

Voith recommends at both joints, to attach a temperature monitoring in the field of the joint bearings.
Maintenance work and inspections

The operator's service personnel may only perform the maintenance work and inspections described in this instruction manual. Other maintenance work (especially overhauls) may only be performed by the manufacturer's service personnel or personnel authorized by the manufacturer.

- Observe specified intervals (Chapter 9.2, page 57).
- Do not perform any maintenance work or inspections during ongoing operation.
- Before maintenance and inspection work, secure the drive against starting up.
- Do not remove any safety equipment as long as the universal joint shaft/system is not standing still and secured against starting up again.
- When the universal joint shaft is standing still, do not load it with high lifting or attachment forces and do not place any objects on the universal joint shaft or hang or attach anything to it.
- Before reattaching the universal joint shaft/system, reattach all safety equipment.
- The universal joint shaft must be checked regularly for changed running noises and vibrations.

Repair

Repairs may only be made by the manufacturer's service personnel or personnel authorized by the manufacturer.

- Only make repairs after consultation with the manufacturer.
- Do not make any repairs when operation is ongoing.

Only repair universal joint shaft in areas not subject to explosion (atmosphere).

Decommissioning

See system documentation

Removal

See repair instructions/system documentation

Only remove universal joint shaft in areas not subject to explosion (atmosphere).

Disposal

- Dispose of packaging material according to the applicable regulations in the place of use.
- Dispose of operating and hazardous materials separately according to the locally-applicable regulations. Heed the manufacturer’s safety data sheets.
2.6 Personal protective equipment

- Heed additional notices in the system documentation.
- Heed additional operator-side regulations.
- In order to prevent injuries, wear personal protective equipment according to the following table:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Protective equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re-installation</td>
<td>• Safety helmet</td>
</tr>
<tr>
<td></td>
<td>• Safety shoes with slip-proof, oil-resistant soles</td>
</tr>
<tr>
<td></td>
<td>• Protective gloves</td>
</tr>
<tr>
<td></td>
<td>• Fall protection</td>
</tr>
<tr>
<td></td>
<td>• Safety glasses</td>
</tr>
<tr>
<td>Commissioning and operation</td>
<td>• Closely-fitting clothing</td>
</tr>
<tr>
<td></td>
<td>• Ear protection</td>
</tr>
<tr>
<td></td>
<td>• Safety shoes with slip-proof, oil-resistant soles</td>
</tr>
<tr>
<td></td>
<td>• Safety glasses</td>
</tr>
<tr>
<td>Transport</td>
<td>• Safety helmet</td>
</tr>
<tr>
<td></td>
<td>• Safety shoes with slip-proof, oil-resistant soles</td>
</tr>
<tr>
<td></td>
<td>• Safety glasses</td>
</tr>
<tr>
<td>Preservation</td>
<td>• Safety glasses</td>
</tr>
<tr>
<td></td>
<td>• Protective gloves</td>
</tr>
<tr>
<td>Maintenance</td>
<td>• Safety helmet</td>
</tr>
<tr>
<td></td>
<td>• Protective gloves</td>
</tr>
<tr>
<td></td>
<td>• Safety shoes with slip-proof, oil-resistant soles</td>
</tr>
<tr>
<td></td>
<td>• Fall protection</td>
</tr>
<tr>
<td></td>
<td>• Safety glasses</td>
</tr>
</tbody>
</table>

Tab. 2.1: Personal protective equipment

2.7 Spare parts

Spare parts must meet the technical specifications of the manufacturer. Same is guaranteed if original parts are used, as these are subject to a regular quality control. Spare parts from other suppliers may, in some cases, change the characteristics of the machine and result in substantial defects, for which Voith cannot assume any responsibility.
3 High-performance Universal Joint Shafts

3.1 Structure

Fig. 3.1: Structure of the universal joint shaft (example of type RT)

- **Link head**
 - The link head consists of:
 - an integral flange yoke
 - or-
 - a semi-integral flange yoke

- **Journal cross set**
 - A journal cross set consists of:
 - a journal cross
 - four bearing units

- **Flange yoke**
 - The flange yokes depend on the universal joint shaft type (Chapter 3.3, page 26).

- **Telescopic length with standard center part**
 - Depending on the size, the telescopic length is either equipped with an involute profile or a diameter-centered SAE profile with length compensation.
 - The involute profile can optionally be provided with a low-maintenance Rilsan® plastic coating.
Telescopic length with tripod center part

The tripod shaft consists of two standard joints and one special center part for length compensation. At the free end of the guide shaft, three bolts offset by 120° with roller bearings are arranged radially. Accordingly, the guide hub has three grooves for accommodating the roller bearings.

Fixed length universal joint shafts

The fixed center part has a fixed length.

ATEX-certified universal joint shaft

In contrast to standard universal joint shafts, ATEX-certified universal joint shafts have:

- A nameplate that clearly identifies the ATEX-certified universal joint shaft.

Fig. 3.2: Nameplate of an ATEX-certified universal joint shaft

- Pos. 1: Manufacturer's name
- Pos. 2: Serial number
- Pos. 3: ATEX identification
- Pos. 4: Year of manufacture
- Pos. 5: Designation according to the type designation
- Pos. 6: Date for next primary examination
The ATEX identifier shown in Pos. 3 of the nameplate is composed as follows, in accordance with DIN 13463-1:

- **Ex** identifier
- Equipment group: II
- Equipment category: 2GD
- Type of ignition protection: c
- Temperature range: T3

For ATEX-certified universal joint shafts, the surface temperature in the field of joint bearings should not exceed 140°C.

Voith recommends at both joints to attach a temperature monitoring in the field of joint bearings (Fig. 3.3, page 24).

Fig. 3.3: Schematic structure of temperature monitoring

The temperature monitoring is not included in the Voith scope of delivery and must be provided by the operator.
3.2 Application

The universal joint transfers torque from axes tilted toward one another at a shaft angle β.

Universal joint shafts with two universal joints transfer torques between a drive motor and a machine. Here, only a Z or W arrangement is permitted, for which the angles β_1 and β_2 must be equal (Fig. 3.4, page 25 and Fig. 3.5, page 25).

Z arrangement

![Diagram of Z arrangement](image1)

- 1 Input side/flange G_1 Universal joint 1
- 2 Center part G_2 Universal joint 2
- 3 Output side/flange b_1, Shaft angle (G_1) b_2, Shaft angle (G_2)

W arrangement

![Diagram of W arrangement](image2)

- 1 Input side/flange G_1 Universal joint 1
- 2 Center part G_2 Universal joint 2
- 3 Output side/flange b_1, Shaft angle (G_1) b_2, Shaft angle (G_2)
3.3 Series

For detailed information about the respective series:
See catalogs for High-performance universal joints (G830) from Voith Turbo GmbH & Co. KG.

3.3.1 Type designations

The design of standard universal joint shafts can be read off using the type designation. The design of special joint shafts must be taken from the dimensional drawing.

<table>
<thead>
<tr>
<th>Example</th>
<th>R</th>
<th>T</th>
<th>S 285/ S 315</th>
<th>R</th>
<th>2560</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>R</td>
<td>T</td>
<td>250.8</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>Center-section design</td>
<td>T,TL,TK,TR,F,GK,FZ,Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size, Bearing type</td>
<td>Flange design (S,K,Q,H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange design</td>
<td>S: friction flange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K: flange with split sleeve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q: flange with face key</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H: flange with Hirth connections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flange size</td>
<td>input side/output side</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile coating</td>
<td>S: Steel (Standard)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R: Rilsan®</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P: PTFE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>(l_{\text{min}}) or (l_{z\text{min}}) in mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.2 S Series

Size: 58–225
Torque transmission: 0.25 - 35 kNm
Flange design: standard design with friction fit
Area of application: marine drives, pumps, locomotives, motor cars, paper machines, general mechanical engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST</td>
<td>Telescopic length with standard center part</td>
</tr>
<tr>
<td>STK 1–4</td>
<td>Telescopic length with shortened center part</td>
</tr>
<tr>
<td>SF</td>
<td>Fixed length universal joint shaft</td>
</tr>
<tr>
<td>SGK</td>
<td>Joint coupling; short, separable fixed length universal joint shaft</td>
</tr>
<tr>
<td>SFZ</td>
<td>Intermediate shaft with a joint head and bearing</td>
</tr>
<tr>
<td>SZ</td>
<td>Intermediate shaft with dual bearings</td>
</tr>
</tbody>
</table>

3.3.3 R Series

Size: 198–550
Torque transmission: 32 - 1000 kNm
Flange design: standard design of the sizes 198 - 390 with friction fit, optionally with face-key or Hirth serration, standard design of the sizes 440 - 550 with face-key, optionally with Hirth serration.
Area of application: general mechanical engineering, railway drives, rolling mills, conveyor systems, paper machines, marine drives

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Telescopic length with standard center part</td>
</tr>
<tr>
<td>RTL</td>
<td>Telescopic length with extended center part</td>
</tr>
<tr>
<td>RTK 1–2</td>
<td>Telescopic length with shortened center part</td>
</tr>
<tr>
<td>RF</td>
<td>Fixed length universal joint shaft</td>
</tr>
<tr>
<td>RGK</td>
<td>Joint coupling; short, separable fixed length universal joint shaft</td>
</tr>
<tr>
<td>RFZ</td>
<td>Intermediate shaft with a joint head and bearing</td>
</tr>
<tr>
<td>RZ</td>
<td>Intermediate shaft with dual bearings</td>
</tr>
</tbody>
</table>
3.3.4 CH Series

Size: 350–1460
Torque transmission: 260 · 19440 kNm
Flange design: Hirth serration or face-key
Area of application: rolling mill main drives, heavy machinery, heavily-loaded drives in mechanical engineering

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHT</td>
<td>Telescopic length with standard center part</td>
</tr>
<tr>
<td>CHF</td>
<td>Fixed length universal joint shaft</td>
</tr>
<tr>
<td>CHGK</td>
<td>Joint coupling; short, separable fixed length universal joint shaft</td>
</tr>
</tbody>
</table>

3.3.5 E Series

Size: 590–1220
Torque transmission: 1600 · 14000 kNm
Flange design: 2-part flange yoke with coupling splines arranged on an axis of symmetry, Hirth serration on the flange
Area of application: rolling mill drives, heavy machinery

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>Telescopic length with standard center part</td>
</tr>
<tr>
<td>EF</td>
<td>Fixed length universal joint shaft</td>
</tr>
<tr>
<td>EGK</td>
<td>Joint coupling; short, separable fixed length universal joint shaft</td>
</tr>
</tbody>
</table>
4 Packaging, transport

Universal joint shafts are ready to install on delivery.

4.1 Packaging

• Stable wood packaging/wood frame
• Secured with appropriate shims

Europe Sea freight
• Stable wood packaging
• Secured with appropriate shims
• Sealed with permanent plastic film
• Addition of drying agents

4.2 Unpacking the universal joint shaft and checking the delivery

If the load capacity of the fork lift is at least 125% of the weight of the universal joint shaft:
⇒ Transport packaged universal joint shaft to the installation location with a fork lift. Heed weight (Delivery note/dimensional drawing of the universal joint shaft).

1. Check delivery immediately upon receipt:
 - Packaging for transport damage
 - Universal joint shaft for damage
 - Delivery for completeness, that is, compare delivery to order

2. Report transport damage to delivery service and document, e.g. with photos.

3. Report complaints to the manufacturer.

4. Dispose of packaging material according to the applicable regulations in the place of use.
4.3 Lifting, transporting, setting down the universal joint shaft

✓ Access to the installation location is possible freely and without hindrances

⇒ Heed the load capacity of the lifting devices, the load lifting and transport equipment: min. 125% of the weight of the universal joint shaft (⇒ Delivery note/ dimensional drawing of the universal joint shaft).

Only transport universal joint shaft in areas not subject to explosion (atmosphere).

Transport with a fork lift

If the load capacity of the fork lift is at least 125% of the weight of the universal joint shaft:

⇒ Transport universal joint shaft to the installation location with a fork lift. Heed weight (⇒ Delivery note/ dimensional drawing of the universal joint shaft).

⚠️ DANGER

Severe to deadly injuries due to swinging or rolling universal joint shaft!

⇒ Place universal joint shaft securely on the forks of the fork lift.
⇒ Secure universal joint shaft against rolling off the forks.

Transport with truck/crane

⚠️ DANGER

Severe to deadly injuries due to swinging or falling universal joint shaft!

⇒ Heed common attachment regulations.
⇒ Only lift universal joint shafts at the prescribed attachment points (⇒ Fig. 4.1, page 32).
⇒ Do not attach universal joint shaft in marked area (⇒ Fig. 4.1, page 32).
⇒ Only use sufficiently dimensioned and tested lifting appliance.
⇒ Secure danger zone under the universal joint shaft against entry.
⇒ Wear safety helmet, safety shoes, gloves, safety glasses, and fall protection.

⚠️ DANGER

In case of telescopic lengths: Severe to deadly injuries due to falling parts!

⇒ Secure telescoping part against being pulled apart, e.g. with a suitable rope.

⚠️ DANGER

Severe crushing or crushing of limbs due to tipping universal joint!

⇒ Secure universal joints against tipping, e.g. with a suitable rope or wedge.
⇒ Never reach between the universal joint, even if there is a deflection guard present

⚠️ DANGER

Severe to deadly injuries due to rolling universal joint shaft!

⇒ Only set universal joint shaft down on suitable bases.
⇒ Secure universal joint shaft against rolling away.

⚠️ DANGER

In case of ATEX-certified universal joint shafts: severe to deadly injuries due to spark formation in case of:

- Equipotential bonding
- Impact-like touching of adjacent metal parts
⇒ Only transport universal joint shaft in areas not subject to explosion (atmosphere).
Universal joint shafts are, as much as possible, balanced at the factory.

- Protect universal joint shaft against damage.
- Transport universal joint shaft without impact.
- Do not attach universal joint shaft in marked area (Fig. 4.1, page 32).
- Heed the center of gravity (hoist axis).
- Transport universal joint shaft as horizontally as possible.
- In case of vertical transport of the universal joint shaft, secure the universal joint shaft from separating with suitable restraints.
- For attaching, use plastic fiber ropes if possible in order not to damage the universal joint shaft. Heed sufficient edge protection.
- Only set universal joint shaft down on a suitable base and secure it against rolling away.

Universal joint shafts are delivered balanced and lubricated so they are ready for installation and operation and.

To guarantee that the system documentation, the delivered universal joint shaft must not be changed.
5 Storage and preservation

You can store universal joint shafts for up to 3 months after delivery without re-coating the preservation.

5.1 Storing the universal joint shaft

If not otherwise specified, the packaging is design for a storage time of max. 4 weeks.

In case of longer-term storage, heed the following:

▸ Heed ambient conditions of the storage room:
 − dry
 − frost-free
 − relative humidity max. 70%
 − even temperature

▸ In case of horizontal storage: place universal joint shaft on suitable underlay (e.g. of wood) to prevent rolling away.

▸ In case of vertical storage: place universal joint shaft in a suitable frame (e.g. of wood) to prevent tipping over.

▸ Check bare metal parts for corrosion every 6 weeks. If necessary, treat parts with anticorrosion agent, e.g. oil or wax.

▸ Lubricate universal joints at least once a year. Move the universal joints back and forth on both directions in order to distribute the grease (➔ Chapter 9.4, page 61).

▸ Put telescopic section into shortest length at least once a year and move back and forth in order to distribute the grease (➔ Chapter 9.4, page 61).

▸ After a storage period of 18 months before installation, have the universal joint shafts examined by authorized service personnel since the seals are subject to aging.
5.2 Preserving the universal joint shaft

⚠️ DANGER
Anticorrosion agents can contain acidic materials and additives!
- Wear safety glasses and suitable protective gloves.
- Heed the manufacturer's safety data sheets.

⚠️ DANGER
There is a danger of fire due to use/processing of flammable cleaning/anticorrosion agents!
- Ensure sufficient ventilation.
- Prevent direct bodily contact and inhalation.
- Heed the manufacturer's safety data sheets.

- For telescopic lengths: push telescopic part entirely together.
- Treat all bare metal parts with anticorrosion agent, e.g. oil or wax.
6 Installation

6.1 Additional regulations for flange bolted connections

6.1.1 Requirements of connecting flange and bolted connections

Design of connecting flange

For fixed length universal joint shaft or joint coupling:

- A connecting flange can move lengthwise through a floating bearing in order to be able to push the universal joint shaft over the centering collar and compensate for possible length changes (e.g. due to heat elongation).

- The use of universal joint shafts with length compensation assumes that the connecting flange sits firmly on the shaft of the connecting units.

Material

- Select material that permits the use of bolts of the property class 10.9 (Fig. 6.1, page 36, Pos. m).

With the use of materials with lower property class values, the torques that can be transmitted by the flange connection and thus also the universal joint shaft are reduced.

- With use of materials with lower property class values:
 - reduce prescribed tightening torque of the bolts accordingly (Tab. 6.2, page 40, area A, column 5)

Dimensions of the connecting flanges and bolted connections

The dimensions of the connecting flange (Fig. 6.1, page 36 and Tab. 6.2, page 40) correspond to those of the universal joint shaft.

Exception:

- Execute locating diameter c with clearance: fit H7/h6 (Tab. 6.2, page 40, area A, column 11).

- For universal joint shafts with rota > 550 mm: dimensions of the connecting flange and bolted connections as well as tightening torques see dimensional drawing of the universal joint shaft.

The relief diameter f on the universal joint shaft flange is not suitable for locking hexagon head bolts or nuts.

- A relief diameter f on the connection flange is suitable for protection against twisting.
Fig. 6.1: Dimensions of the connecting flange and bolted connections

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
<th>Additional information (➔ Tab. 6.2, page 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø a</td>
<td>Flange diameter</td>
<td>Dimensions (➔ "Dimensions of the connecting flange" area)</td>
</tr>
<tr>
<td>Ø b</td>
<td>Bolt circle diameter</td>
<td></td>
</tr>
<tr>
<td>Ø c</td>
<td>Locating diameter</td>
<td></td>
</tr>
<tr>
<td>Ø fₐ</td>
<td>Flange diameter, bolt side</td>
<td></td>
</tr>
<tr>
<td>Ø f₉</td>
<td>Flange diameter, nut side</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Flange thickness</td>
<td></td>
</tr>
<tr>
<td>mmin</td>
<td>Minimum distance</td>
<td>• Length of the hexagon head bolt m including the height of the bolt head</td>
</tr>
<tr>
<td>m</td>
<td>Hexagon head bolt in accordance with ISO 4014 - 10.9 Hex. nut in accordance with DIN 985</td>
<td>• Dimensions of the hexagon head bolt m (➔ area A, column 4)</td>
</tr>
<tr>
<td>n</td>
<td>Hexagon head bolt in accordance with ISO 4014 - 8.8 Hex. nut in accordance with DIN 985</td>
<td>• Number per connecting flange for universal joint shaft flange:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Standard design (➔ area A, column 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with face-key (➔ area A, column 2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- with Hirth serrations (➔ area A, column 3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Dimensions (➔ area A, column 4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tightening torque for a coefficient of friction µ = 0.12 and 90% utilization of the bolt yield point (➔ area A, column 5)</td>
</tr>
<tr>
<td>o</td>
<td>Split sleeve</td>
<td>Dimensions (➔ area B, column 8)</td>
</tr>
<tr>
<td>p</td>
<td>Washer</td>
<td>Dimensions (➔ area B, column 9)</td>
</tr>
<tr>
<td>t</td>
<td>Deep centering</td>
<td>Dimensions (➔ "Dimensions of the connecting flange" area)</td>
</tr>
<tr>
<td>Pos.</td>
<td>Description</td>
<td>Additional information (➔ Tab. 6.2, page 40)</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>v</td>
<td>Length from the bearing surface of the nut to the end of the bolt</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>face-key width</td>
<td></td>
</tr>
<tr>
<td>yₚ</td>
<td>face-key depth</td>
<td></td>
</tr>
<tr>
<td>Z₁</td>
<td>Axial run-out</td>
<td>Permissible values for deviation in axial runout $Z₁$ and [Z₂] at operating speeds $< 1,500 \text{ min}^{-1}$ rpm (➔ column 10)</td>
</tr>
<tr>
<td>Z₂</td>
<td>Radial run-out</td>
<td>Halve values at higher speeds up to 3000 min^{-1}.</td>
</tr>
</tbody>
</table>

Tab. 6.1: Dimensions of the connecting flange and bolted connections (key)
High-performance universal joint shaft

Instruction manual (Translation) G853 en 07/2013, Version 1

<table>
<thead>
<tr>
<th>Column</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>a</td>
<td>-</td>
<td>-</td>
<td>m</td>
<td>MA</td>
<td>z</td>
<td>n</td>
<td>o</td>
<td>p</td>
<td>MA</td>
</tr>
<tr>
<td>[mm]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>b±0.1</td>
<td>fₐ<sub>0.3</sub></td>
<td>f₉</td>
<td>g</td>
<td>t</td>
<td>v</td>
</tr>
<tr>
<td>[Nm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[Nm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
<td>[mm]</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>38.5</td>
<td>3.5</td>
<td>1.2<sub>0.16</sub></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types: ST/STK 1-4/ SF/ SGK/ SFZ/ SZ</td>
<td></td>
</tr>
<tr>
<td>058.1</td>
<td>58</td>
<td>4</td>
<td>M5 x 16</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>065.1</td>
<td>65</td>
<td>4</td>
<td>M6 x 20</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>075.1</td>
<td>75</td>
<td>6</td>
<td>M6 x 25</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090.2</td>
<td>90</td>
<td>4</td>
<td>M8 x 25</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.2</td>
<td>100</td>
<td>6</td>
<td>M8 x 25</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.2</td>
<td>120</td>
<td>8</td>
<td>M10 x 30</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120.5</td>
<td>120</td>
<td>8</td>
<td>M10 x 30</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.2</td>
<td>150</td>
<td>8</td>
<td>M12 x 40</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.3</td>
<td>150</td>
<td>8</td>
<td>M12 x 40</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150.5</td>
<td>150</td>
<td>8</td>
<td>M12 x 40</td>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.5</td>
<td>180</td>
<td>8</td>
<td>M14 x 45</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225.7</td>
<td>225</td>
<td>8</td>
<td>M16 x 55</td>
<td>265</td>
<td>4</td>
<td>M12 x 60</td>
<td>21 x 28</td>
<td>13</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions of the connecting flanges

<table>
<thead>
<tr>
<th>Z₁, Z₂</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>30</td>
</tr>
<tr>
<td>0.05</td>
<td>35</td>
</tr>
<tr>
<td>0.05</td>
<td>42</td>
</tr>
<tr>
<td>0.05</td>
<td>47</td>
</tr>
<tr>
<td>0.05</td>
<td>57</td>
</tr>
<tr>
<td>0.05</td>
<td>75</td>
</tr>
<tr>
<td>0.05</td>
<td>75</td>
</tr>
<tr>
<td>0.05</td>
<td>90</td>
</tr>
<tr>
<td>0.05</td>
<td>90</td>
</tr>
<tr>
<td>0.05</td>
<td>90</td>
</tr>
<tr>
<td>0.05</td>
<td>110</td>
</tr>
<tr>
<td>0.06</td>
<td>140</td>
</tr>
</tbody>
</table>
Types: RT/RTL/RTK 1-2/RF/RGK/RFZ/RZ (design with friction flange)

<table>
<thead>
<tr>
<th>Column</th>
<th>Size</th>
<th>A (Fig. 6.1)</th>
<th>B (Fig. 6.1)</th>
<th>Dimensions of the connecting flanges</th>
<th>Z₁, Z₂</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>[mm] [Nm]</td>
<td>O</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>m</td>
<td>z</td>
<td>[mm] [Nm]</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b±0.1</td>
<td>f₁±0.3</td>
<td>f₂</td>
<td>g</td>
<td>t</td>
<td>v</td>
</tr>
<tr>
<td>225</td>
<td>225</td>
<td>8</td>
<td>M16 x 55</td>
<td>265</td>
<td>196</td>
<td>171</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>8</td>
<td>M18 x 60</td>
<td>365</td>
<td>218</td>
<td>190</td>
</tr>
<tr>
<td>285</td>
<td>285</td>
<td>8</td>
<td>M20 x 70</td>
<td>515</td>
<td>245</td>
<td>214</td>
</tr>
<tr>
<td>315</td>
<td>315</td>
<td>8</td>
<td>M22 x 75</td>
<td>695</td>
<td>280</td>
<td>247</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>10</td>
<td>M22 x 80</td>
<td>695</td>
<td>310</td>
<td>277</td>
</tr>
<tr>
<td>390</td>
<td>390</td>
<td>10</td>
<td>M24 x 100</td>
<td>890</td>
<td>345</td>
<td>308</td>
</tr>
<tr>
<td>435</td>
<td>435</td>
<td>10</td>
<td>M27 x 120</td>
<td>1310</td>
<td>385</td>
<td>342</td>
</tr>
</tbody>
</table>

Types: RT/RTL/RTK 1-2/RF/RGK/RFZ/RZ design with split sleeves)

<table>
<thead>
<tr>
<th>Column</th>
<th>Size</th>
<th>A (Fig. 6.1)</th>
<th>B (Fig. 6.1)</th>
<th>Dimensions of the connecting flanges</th>
<th>Z₁, Z₂</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>[mm] [Nm]</td>
<td>O</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>m</td>
<td>z</td>
<td>[mm] [Nm]</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>b±0.1</td>
<td>f₁±0.3</td>
<td>f₂</td>
<td>g</td>
<td>t</td>
<td>v</td>
</tr>
<tr>
<td>225</td>
<td>225</td>
<td>8</td>
<td>M12 x 60</td>
<td>21 x 28</td>
<td>13</td>
<td>80</td>
</tr>
<tr>
<td>250</td>
<td>250</td>
<td>8</td>
<td>M14 x 70</td>
<td>25 x 32</td>
<td>15</td>
<td>128</td>
</tr>
<tr>
<td>285</td>
<td>285</td>
<td>8</td>
<td>M16 x 75</td>
<td>28 x 36</td>
<td>17</td>
<td>195</td>
</tr>
<tr>
<td>315</td>
<td>315</td>
<td>8</td>
<td>M16 x 80</td>
<td>30 x 40</td>
<td>17</td>
<td>195</td>
</tr>
<tr>
<td>350</td>
<td>350</td>
<td>8</td>
<td>M18 x 90</td>
<td>32 x 45</td>
<td>19</td>
<td>270</td>
</tr>
<tr>
<td>390</td>
<td>390</td>
<td>10</td>
<td>M18 x 110</td>
<td>32 x 60</td>
<td>19</td>
<td>270</td>
</tr>
<tr>
<td>435</td>
<td>435</td>
<td>10</td>
<td>M20 x 110</td>
<td>35 x 60</td>
<td>21</td>
<td>380</td>
</tr>
</tbody>
</table>
Dimensions of the connecting flanges

<table>
<thead>
<tr>
<th>Column</th>
<th>A (Fig. 6.1)</th>
<th>B (Fig. 6.1)</th>
<th>Dimensions of the connecting flanges</th>
<th>Z₁, Z₂</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>a</td>
<td>M16 x 65</td>
<td>225</td>
<td>196</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>M18 x 75</td>
<td>250</td>
<td>218</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>M20 x 80</td>
<td>285</td>
<td>245</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>M22 x 95</td>
<td>315</td>
<td>280</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>M22 x 100</td>
<td>350</td>
<td>310</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>M24 x 120</td>
<td>390</td>
<td>345</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>M27 x 120</td>
<td>440</td>
<td>385</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>M30 x 140</td>
<td>480</td>
<td>425</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>M30 x 140</td>
<td>550</td>
<td>492</td>
<td>250</td>
</tr>
<tr>
<td>Types: RT/ RTL/ RTK 1-2/ RF/ RGK/ RFZ/ RZ (design with cross-key)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column</th>
<th>A (Fig. 6.1)</th>
<th>B (Fig. 6.1)</th>
<th>Dimensions of the connecting flanges</th>
<th>Z₁, Z₂</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>a</td>
<td>M16 x 65</td>
<td>225</td>
<td>196</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>M18 x 75</td>
<td>250</td>
<td>218</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>M20 x 80</td>
<td>285</td>
<td>245</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>M22 x 95</td>
<td>315</td>
<td>280</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>M22 x 100</td>
<td>350</td>
<td>310</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>f</td>
<td>M24 x 120</td>
<td>390</td>
<td>345</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>g</td>
<td>M27 x 120</td>
<td>440</td>
<td>385</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>M30 x 140</td>
<td>480</td>
<td>425</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>i</td>
<td>M30 x 140</td>
<td>550</td>
<td>492</td>
<td>250</td>
</tr>
<tr>
<td>Types: RT/ RTL/ RTK 1-2/ RF/ RGK/ RFZ/ RZ (design with Hirth serration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1.2 Checking bolted connections and tightened parts

Checking bolts

⇒ Ensure that bearing surfaces and threads of the bolts are in perfect condition, that is,
 – edges are burr-free
 – no impact points (plastically deformed) present
 – surface black anhealed, oiled, yet free from scale

Checking threads

⇒ For completely-rolled threads: do not re-cut thread for reasons of endurance strength.

⇒ Check threads of the bolts and nuts for accumulations or soiling, e.g. rust, paint or hardened oil.

⇒ In case of accumulations or soiling: clean bolts and nuts and lightly oiled with thin machine oil (12–38 mm²/s at 50 °C, ISO VG 15 to ISO VG 46).

Checking washers

If you are using washers:

⇒ Make sure that the hardness of the washers is appropriate for the property class of the bolts, e.g. washers HV 300 according to ISO 7089.

⇒ Ensure that the bearing surfaces are in good condition, that is,
 – edges burr-free
 – no impact points present

Checking tightened parts

⇒ Ensure that part joints and bearing surfaces of the bolts and nuts are even, at right angles, parallel, burr-free and that nuts are mounted so that the designation is visible and in case of self-locking nuts, not visible.

Checking stud screws

![Dimensions of a stud screw](image)

⇒ To order stud screws, the measurement d and the measurement l must be measured and specified with the order.
6.2 Installing the universal joint shaft

The following instructions describe the installation of a universal joint shaft with standard flange.

☞ Heed additional regulations:
 - for Hirth serration (☞ Chapter 6.3, page 49)
 - for use in paper machines (☞ Chapter 6.4, page 50)

Only install universal joint shaft in areas not subject to explosion (atmosphere).

⚠️ DANGER

For specially-designed universal joint shafts, improper installation and removal can cause severe injuries or even death.

☞ Heed and if necessary request additional documentation (☞ Chapter 1.3, page 8).

⚠️ DANGER

Severe to deadly injuries due to rotating parts!

☞ Secure drive against starting up.

☞ Keep personnel who are not participating away, e.g. using supervisory personnel, enclosures, fences.

⚠️ DANGER

Severe to deadly injuries due to swinging or falling universal joint shaft!

☞ Heed common attachment regulations.

☞ Only lift universal joint shaft at the prescribed attachment points (☞ Fig. 4.1, page 32).

☞ Do not attach universal joint shaft in marked area (☞ Fig. 4.1, page 32).

☞ Only use sufficiently dimensioned and tested lifting appliance.

☞ Secure danger zone under the universal joint shaft against entry.

☞ Wear safety helmet, safety shoes, gloves, safety glasses, and fall protection.
DANGER

In case of telescopic lengths: Severe to deadly injuries due to falling parts!

⇒ Secure telescoping part against being pulled apart, e.g. with a suitable rope.

DANGER

In case of ATEX-certified universal joint shafts: severe to deadly injuries due to spark formation in case of:

- Equipotential bonding
- Impact-like touching of adjacent metal parts
- Slipping screw drivers
- Hammer blows

⇒ Only install universal joint shaft in areas not subject to explosion (atmosphere).

DANGER

Severe crushing or crushing of limbs due to tipping universal joint!

⇒ Secure universal joints against tipping, e.g. with a suitable rope or wedge.

⇒ Never reach between the universal joint, even if there is a deflection guard present.

DANGER

Severe to deadly injuries due to rolling universal joint shaft!

⇒ Only set universal joint shaft down on suitable bases.

⇒ Secure universal joint shaft against rolling away.
6.2.1 Removing preservation

⚠️ DANGER

Cleaning agents can contain acidic materials and additives!
✅ Wear safety glasses and suitable protective gloves.
✅ Heed the manufacturer's safety data sheets.

⚠️ DANGER

There is a danger of fire due to use/processing of flammable cleaning/anticorrosion agents!
✅ Ensure sufficient ventilation.
✅ Prevent direct bodily contact and inhalation.
✅ Heed the manufacturer's safety data sheets.

Remove the anticorrosion agent with cleaning agents.

6.2.2 Transport universal joint shaft to the installation location

Fig. 6.3: Universal joint shaft

1 Screw
2 Connecting flange (output, input side)
3 Flange yoke
4 Grease/lubricating nipple
5 For telescopic lengths: profile guard
6 Screw plug

N Zero marking, e.g. arrow
Z₁ Axial run-out
Z₂ Radial run-out
For universal joint shafts with sliding part

Do not load profile guard (5).

1. Transport universal joint shaft to the installation location
 (Chapter 4.3, page 30).

2. Remove transport braces.

3. Seal threaded holes of the transport braces with plugs.

6.2.3 Cleaning the universal joint shaft and connecting flange

For the cleaning of the universal joint shaft:

− Do not use any aggressive cleaning agents

− Do not clean seal elements and grease/lubricating nipple
 with a high-pressure or steam cleaner.

1. Clean universal joint shafts and connecting flanges, that is,
 centering and plane surfaces must be free of dirt, grease,
 preserving agent, paint, and burrs.

2. Clean grease/lubricating nipples (4).

6.2.4 Checking, aligning, and fastening connecting flange

Do not use pry bars to turn the universal joint shaft in the joint
since otherwise bearing seals and the grease/lubricating
nipple could be damaged.

The universal joint shaft must be arranged so that the key
profile is protected against dirt and humidity. If possible,
installation should be so that the opening of the profile guard
(seal) points downward.

If two or more universal joint shafts are arranged next to one
another, it is recommended that you install them turned by
90° to one another. Thus the mass acceleration torques
caused by the cardan error of the universal joint shaft center
part toward the outside are negated at least somewhat.

1. Check the connecting flange for roundness and true axial run
 out (Tab. 6.1, page 37).

2. Align and fasten the connecting flange to the universal joint
 shaft according to the installation situation (system
documentation).
6.2.5 Checking the differential angle of the front faces of the connecting flange (with Z arrangement)

![Diagram showing the differential angle of the front faces of the connecting flange.](image)

Fig. 6.4: Checking the difference in joint angle between the faces of the connecting flanges

1. Checking the difference in joint angle between the faces of the connecting flanges:

<table>
<thead>
<tr>
<th>Speed [min(^{-1})]</th>
<th>Max. differential angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1500</td>
<td>0.5</td>
</tr>
<tr>
<td>> 1500</td>
<td>➔ Fig. 6.5, page 46</td>
</tr>
</tbody>
</table>

Tab. 6.3: Permissible differential angle (with Z arrangement)

2. In case of deviation: Realign connecting flange

![Graph showing the permissible differential angle vs. speed.](image)

Fig. 6.5: Permissible differential angle (with Z arrangement)
6.2.6 Checking the differential angle of the front faces of the connecting flange (with W arrangement)

1. Checking the difference in joint angle between the faces of the connecting flanges:

<table>
<thead>
<tr>
<th>Speed [min⁻¹]</th>
<th>Max. differential angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1500</td>
<td>0.5</td>
</tr>
<tr>
<td>> 1500</td>
<td>on request</td>
</tr>
</tbody>
</table>

Tab. 6.4: Permissible differential angle (with W arrangement)

2. In case of deviation: Align connecting flange with alignment tips.

6.2.7 Bolting together the universal joint shaft and the connecting flange

ℹ️ Check that the contact surface of the bolts and nuts are bare metal, clean, flat, burr-free, and at a right angle to the hole.

ℹ️ During assembly of the universal joint shaft, make sure that the zero markings (N) are on a single plane (➡️Fig. 6.5, page 44).

ℹ️ With several moving parts, make sure that the components are machted marked, so they cannot be confused.

ℹ️ Balancing weights may not be removed or shifted.

⚠️ DANGER
While working on the universal joint shaft of vehicles, severe injuries can result if the vehicle starts to move!

ℹ️ Secure vehicle against starting up/moving.

ℹ️ Standard designs of the universal joint shaft flange are self-centering thanks to advance and rebound.

ℹ️ Begin installation with the input side connecting flange.

ℹ️ If as a result of inexact position of the holes there are difficulties during installation:

ℹ️ Do not re-bore holes or enlarge them in order to prevent an impermissibly high area pressure and thus a possible failure of the connection.

ℹ️ Replace flawed part.
If you are using liquid locking agents such as "Loctite" or "Omnifit": heed deviating tightening torques (Manufacturer's instructions).

Do not use any lubricants that contain MoS₂, e.g. Molykote

Tighten bolts in a diagonally opposite sequence.

The use of used nuts or bolts is not permitted.

To avoid cold welding and guarantee the testability of the bolted connection, heed the following:

When using the nut make sure that the surface with the property class and company mark is visible. For self-locking nuts, by contrast, the company mark may not be visible.

Threaded connection

For a threaded connection:
1. Align the universal joint shaft with respect to the connecting flange and slide onto the spigot.
2. If the bolt head has a stop or is flush with the fastening: if necessary, tighten the bolt with screwdriver up to a snug torque (approx. 0.3 Mₘ) (Tab. 6.1, page 37).
3. Tighten the bolts using a calibrated torque wrench, quickly and without interruptions, to a tightening torque of Mₘ.

Blind hole connection

For a blind hole connection:
1. Screw stud bolts into blind hole (if using self-locking nuts secure the male thread of the studs e.g. with Loctite 242. Follow the special instructions of the manufacturer for blind holes).
2. Align the universal joint shaft with respect to the connecting flange and slide onto the spigot.
3. Thread on the nuts and using a calibrated torque wrench, quickly and without interruptions, to a tightening torque of Mₘ.

6.2.8 Final work

Lubricate universal joint shaft (Chapter 9.4, page 61).
6.3 Additional regulations for Hirth serration

For divided flange yokes:

⇒ Heed additional documentation (Mounting and dismounting instructions for divided flange yokes).

![Diagram](image)

Fig. 6.6: Seals for Hirth serration

1. If present: attach O-seal (3).
2. Attach O-seals (1).
3. Paint Hirth serration thinly with anti-seize (heed here that the threaded and blind holes are free of anti-seize, otherwise the friction value in the threads can be reduced by the anti-seize).
4. Heat up protective ring (2) to max. 80 °C and push onto universal joint over Hirth serration.

⇒ If necessary: use hydraulic wrench.

5. Tighten bolted connection with calibrated torque wrench cross-wise in stages of 40%, 70%, and 100% of the prescribed tightening torque:
 - for Rota < 550 mm (Tab. 6.1, page 37)
 - for Rota > 550 mm (Dimensional drawing of the universal joint shaft)
6.4 Additional regulations for use in paper machines

![Fig. 6.7: Checking radial offset and flange distance (with use in paper machines)](image)

<table>
<thead>
<tr>
<th>Type</th>
<th>Universal joint shaft length l [mm]</th>
<th>Δr [mm]</th>
<th>Δa [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>< 800</td>
<td>± 2</td>
<td>± 2</td>
</tr>
<tr>
<td>Standard</td>
<td>800–1500</td>
<td>± 3</td>
<td>± 3</td>
</tr>
<tr>
<td>Standard</td>
<td>1500–2500</td>
<td>± 4</td>
<td>± 4</td>
</tr>
<tr>
<td>Standard</td>
<td>> 2500</td>
<td>± 5</td>
<td>± 5</td>
</tr>
</tbody>
</table>

Tab. 6.5: Permissible radial offset and flange distance (for use in paper machines)

- Adhere to permissible radial offset and flange distance for alignment of the input and output shafts when installing the universal joint shafts:

- Only use the bolts that are screwed into the associated flange yoke.
7 Commissioning and operation

7.1 Commissioning the universal joint shaft

- Check position of the individual parts to one another: the zero marking (N) must be in a single plane.
- Tighten the bolts (1) with tightening torque M_a (Tab. 6.1, page 37).

In areas subject to explosion (atmosphere), only use ATEX-certified universal joint shafts. Here, heed certification (Chapter 3.1, page 22).

In case of ATEX-certified universal joint shafts, it must be ensured that:
- The surface temperature in the field of joint bearings not exceed 140°C.
- Voith recommends at both joints, to attach a temperature monitoring in the field of the joint bearings. (Chapter 3.1, page 22).

⚠️ DANGER

Severe to deadly injuries due to rotating parts!

- Attach guards (system documentation).

- Lubricate telescopic center section of universal joint shafts that were stored for a longer time before commissioning in the shortest operating position (Chapter 9.4, page 61).
- Before commissioning, check whether all attached transport braces have been removed.
7.2 Operating the universal joint shaft

✓ Universal joint shaft checked (➔ Chapter 7.1, page 51)
✓ Guards attached (➔ system documentation)

⚠️ DANGER

Severe to deadly injuries due to rotating parts!

⇒ Keep personnel who are not participating away, e.g. using supervisory personnel, enclosures, fences.
⇒ Do not remove any safety equipment as long as the universal joint shaft/system is not standing still and secured against starting up again.
⇒ Before restarting the universal joint shaft/system, reattach all safety equipment.

⇒ Perform regular visual inspections, e.g. for damage, conspicuity.
⇒ Monitor operating noises for change. Report changes to the responsible office/person.

⚠️ DANGER

In case of ATEX-certified universal joint shafts: severe to deadly injuries due to overheating universal joint shaft in case of:

- Vibrating or oscillating universal joint shaft
- Exceeding of the life span
- Overload of the universal joint shaft
⇒ Avoid vibrations and oscillations during operation
⇒ Heed life span of the universal joint shaft
 (➔ Chapter 9.6, page 64)
⇒ Only operate the universal joint shaft within the specified speed and torque range
 (➔ Dimensional drawing of the system documentation)
⇒ Adhere to specific shaft angle.
 (➔ Dimensional drawing of the system documentation)
8 Eliminating errors

The operator's service personnel may only perform the work for eliminating errors described in this instruction manual. Additional measures to eliminate errors may only be performed by the manufacturer's service personnel or by service personnel authorized by the manufacturer.

⚠️ DANGER
Severe to deadly injuries due to rotating parts!
- Secure drive against starting up.
- Keep personnel who are not participating away, e.g. using supervisory personnel, enclosures, fences.
- Do not remove any safety equipment as long as the universal joint shaft/system is not standing still and secured against starting up again.
- Before restarting the universal joint shaft/system, reattach all safety equipment.

⚠️ DANGER
While working on the universal joint shaft of vehicles, severe injuries can result if the vehicle starts to move!
- Secure vehicle against starting up/moving.
The errors refer to increased values as compared to normal operation.

<table>
<thead>
<tr>
<th>Error</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
</table>
| Strong vibrations | Insufficient roundness and true axial run out of the connecting flange | ➜ Remove universal joint shaft (Repair instructions/system documentation).
➤ Check the connecting flange for roundness and axial run out (Tab. 6.1, page 37).
➤ If necessary, realign connecting flange. |
| Worn telescopic part | | ➜ Checking deflection play of the center part (Chapter 9.3.2, page 59). |
| Loose bolted connections or connecting flange | | ➜ Remove universal joint shaft (Repair instructions/system documentation).
➤ Check connection, universal joint shaft flange, and centering for damage (Chapter 6.2.7, page 47).
➤ Replace bolts. |
| Imbalance | | ➜ Remove universal joint shaft (Repair instructions/system documentation).
➤ Check connection, universal joint shaft flange, and centering for damage and run-out (Chapter 6.2.7, page 47).
➤ Only have universal joint shafts balanced by the manufacturer's service personnel or by service personnel authorized by the manufacturer. |
| High temperature in the area around the universal joints | Damaged journal cross set | ➜ Remove universal joint shaft (Repair instructions/system documentation).
➤ Replace journal cross set (Repair instructions).
➤ Insofar as provided: Only have universal joint shaft balanced by the manufacturer's service personnel or by service personnel authorized by the manufacturer. |
| Insufficient lubrication | | ➜ Lubricate universal joint shaft (Chapter 9.4, page 61). |

Tab. 8.1: Eliminating errors
9 Maintenance

The operator's service personnel may only perform the maintenance work and inspections described in this instruction manual. Other maintenance work (especially overhauls) may only be performed by the manufacturer's service personnel or personnel authorized by the manufacturer.

⚠️ DANGER

Severe to deadly injuries due to rotating parts!

- Secure drive against starting up.
- Keep personnel who are not participating away, e.g. using supervisory personnel, enclosures, fences.
- Do not remove any safety equipment as long as the universal joint shaft/system is not standing still and secured against starting up again.
- Before restarting the universal joint shaft/system, reattach all safety equipment.

⚠️ DANGER

While working on the universal joint shaft of vehicles, severe injuries can result if the vehicle starts to move!

- Secure vehicle against starting up/moving.

⚠️ WARNING

Injuries due to sharp-edged, falling, swinging, rolling parts!

- Wear safety helmet, safety shoes, safety glasses, gloves, and fall protection.
9.1 General notes about the maintenance and inspection of universal joint shafts

⇒ The user or operator must heed the legal safety regulations and take suitable preventative measures before starting maintenance work.

⇒ The universal joint shafts may not be separated at the key profile and exchanged for one another since the balancing quality will be impermissibly compromised.

⇒ Flange bolted connections must be checked for tightness and if necessary re-tightened to the prescribed torque.

⇒ To prevent impairment the balancing quality as well as a source of ignition, dirt accumulations must be removed periodically.

⇒ If universal joint shafts are cleaned with a high-pressure device, seal elements may not be cleaned with the direct stream. A re-lubrication after cleaning is recommended.

⇒ Universal joint shafts will be delivered painted on request. For re-working of the painting, we recommend our standards. Please contact us about this.

⇒ During color spraying of the universal joint shaft, attention must be paid that the area where the profile or the seal slides, is protected against color application. The same applies for the grease/lubrication nipple, the ventilation valves, the contact surfaces of the bolted connections, the flange and the centering surfaces.
9.2 Intervals for maintenance and inspections

The following intervals are guide values.

- Adapt intervals to the respective operating conditions.
- Agree on longer intervals with the manufacturer.

Lubrication intervals

- Before longer downtimes, lubricate all lubrication points.
- For 3-shift operation or in case of heavy loading of the seals, lubricate monthly. This may be necessary in roller mills due to the special operating conditions (e.g. water, steam, cinders, dust).
- In case of use in paper machines with permanent operation, lubricate the universal joint shafts every two months.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Maintenance work or inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-time after installation</td>
<td>1 Lubricate universal joints (Chapter 9.4.2, page 61).</td>
</tr>
<tr>
<td>After every 200 operating hours</td>
<td>1 Lubricate universal joints (Chapter 9.4.2, page 61).</td>
</tr>
<tr>
<td></td>
<td>2 Perform visual inspection, e.g. for damage, noteworthy changes, and especially the sealing seat of the lubrication nipple. Replace in case of leaks.</td>
</tr>
<tr>
<td></td>
<td>3 Check bolted connections and connecting flange for tightness. Re-tighten bolted connections if necessary (Tab. 6.1, page 37).</td>
</tr>
<tr>
<td></td>
<td>4 For universal joint shafts with center part: lubricate telescopic part (Chapter 9.4.2, page 61).</td>
</tr>
<tr>
<td></td>
<td>5 Check maximum service life of ATEX-certified universal joint shafts (Chapter 9.6, page 64).</td>
</tr>
<tr>
<td>Every 6 months</td>
<td>1 Check bolted connections and connecting flange for tightness. Re-tighten bolted connections if necessary (Tab. 6.1, page 37).</td>
</tr>
<tr>
<td></td>
<td>2 Perform visual inspection, e.g. for damage, noteworthy changes, and especially the sealing seat of the lubrication nipple. Replace in case of leaks. Checking axial clearance of the journal cross set (Chapter 9.3.1, page 58). Checking deflection play of the center part (Chapter 9.3.2, page 59).</td>
</tr>
<tr>
<td></td>
<td>3 For universal joint shafts with center part: lubricate telescopic part (Chapter 9.4.2, page 61).</td>
</tr>
<tr>
<td>Annually</td>
<td>1 Check date for the next main overhaul of ATEX-certified universal joint shafts (Chapter 3.1, page 22).</td>
</tr>
<tr>
<td></td>
<td>2 Recommendation: lubricate length compensation with Rilsan coating once a year for safety (Chapter 9.4.2, page 61).</td>
</tr>
</tbody>
</table>
After several years, depending on load

- Have main overhaul done by the manufacturer.
- If necessary, order new universal joint shaft.

In case of unusual running noises:

- Perform visual inspection, e.g. for damage, noteworthy changes
- Checking axial clearance of the journal cross set (Chapter 9.3.1, page 58).
- Checking deflection play of the center part (Chapter 9.3.2, page 59). Determine cause, e.g. insufficient connection or other system parts are touching the universal joint shaft, e.g. hoses or cables.
- If possible, eliminate the cause or consult the manufacturer.

Tab. 9.1: Intervals for maintenance work and inspections

9.3 Inspections

9.3.1 Checking axial clearance of the journal cross set

The measured values specified in this section are examples.

- Binding measured values for each universal joint shaft type: see repair instructions.
- Heed force for lifting the universal joint shaft: max. 1.5 x weight of the universal joint shaft.

Fig. 9.1: Checking axial clearance of the journal cross set on two levels

1. On the first universal joint:
 - Set holder on the flange of the flange yoke.
− If possible, remove bearing cover and apply the dial gauge to the front face of the journal cross. Otherwise apply the dial gauge to the bottom of the bearing.
− Lift the universal joint shaft with a crane and read the measured value from the dial gauge.

2. Check measurement values:

<table>
<thead>
<tr>
<th>Speed [min⁻¹]</th>
<th>Max. axial clearance [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500</td>
<td>0.20</td>
</tr>
<tr>
<td>500–1500</td>
<td>0.06</td>
</tr>
<tr>
<td>> 1500</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Tab. 9.2: Checking axial clearance of the journal cross set

3. If exceeded:

⇒ Use thicker locking rings to reduce the axial clearance (order repair instructions).
⇒ Send universal joint shaft to manufacturer.
⇒ Insofar as provided: Only have universal joint shaft balanced by the manufacturer's service personnel or by service personnel authorized by the manufacturer.

9.3.2 Checking deflection play of the center part

Fig. 9.2: Checking deflection play of the center part

1. Measure the length “a” of the spline profile on the top and mark the middle.

2. Position the universal joint shaft precisely at the installation length and put under neath.
3. Apply dial gauge and set scale to "0."

4. Measure distance \(b \) from the measurement point to the middle of the key profile.

\[\Rightarrow \text{Heed force for lifting the universal joint shaft: max. } 1.5 \times \text{weight of the universal joint shaft.} \]

5. Lift the universal joint shaft and read the measured value from the dial gauge.

6. Calculate deflection ratio \(K \): \(K = \frac{c}{b} \)

Example:
Dimension \(b = 300 \text{ mm} \)
Dimension \(c = 0.36 \text{ mm} \)

Deflection ratio \(K = \frac{0.36 \text{ mm}}{300 \text{ mm}} = 0.0012 \)

<table>
<thead>
<tr>
<th>Speed [\text{min}^{-1}]</th>
<th>Max. deflection ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< 500)</td>
<td>0.004</td>
</tr>
<tr>
<td>(> 500)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Tab. 9.3: Permissible deflection ratio

If exceeded:
\[\Rightarrow \text{Send universal joint shaft to manufacturer.} \]
9.4 Lubrication

9.4.1 Lubricants

Suitable for the lubrication of the universal joint shaft are greases that meet the requirements for the identification KP 2 K according to DIN 51825, e.g. “Renolit PEP 1/2” from Fuchs. For our CH and E series, we recommend Wear Care 500, which can also be mixed with other greases.

- For other greases: consult the manufacturer.
- No lubricants with MOS₂ additives may be used.

9.4.2 Lubricating the universal joint shaft

⚠️ DANGER

Danger of slipping on escaped lubricants!

- Wear safety shoes with slip-proof, oil-resistant soles, safety glasses, safety helmet, and fall protection.
- Remove escaped lubricants as soon as possible.

- For center parts with (plastic-coated) Rilsan spline profile, application related re-lubrication is required. Please contact the manufacturer.

- The ventilation valves may not be removed or replaced by grease/lubricating nipples or other plugs.

- Do not press in lubricant with hard knocks or too much pressure (max. 15 bar) on the grease/lubricating nipple.
Fig. 9.4: Lubrication points of the universal joint shaft

S₁ Lubrication point (central on the journal cross)
S Lubrication point (for telescopic shafts)
S₂ Lubrication point (for individual lubrication)

⇒ Re-lubricating the length compensation should, if possible, always be done at the shortest operating position. If this is not possible, the lubricant quantities specified in the following table (⇒ Tab. 9.4, page 64) must be used. At least once a year the universal joint shaft should be pushed slowly together to the shortest operating length so that excess grease can escape via the profile guard.

1. Put the universal joint shaft in the shortest operating position.
2. Clean all lubrication points.
3. Lubricate bearings until the lubricant escapes from all seal lips in order to ensure that
 - the quantity of grease is sufficient
 - any penetrated dirt is removed
 - the seal lips are re-greased.
4. For telescopic lengths:
 - If possible lubricate center part in the shortest operating position until lubricant escapes via the seal of the profile guard.
 - If the center part cannot be put into the shortest operating position, the lubricant quantity specified (⇒ Tab. 9.4, page 64), must be used for re-lubrication if nothing else is specified on the dimensional drawing.
Rota [mm] Standard designs Amount of grease [cm³]

<table>
<thead>
<tr>
<th>Rota [mm]</th>
<th>Standard designs</th>
<th>Amount of grease [cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>198</td>
<td>RT 170</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>RT 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTL 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK1 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK2 50</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>RT 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTL 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK1 160</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK2 110</td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>RT 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTL 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK1 250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK2 150</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>RT 90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTL 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK1 210</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK2 150</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>RT 140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTL 180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK1 690</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK2 480</td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>RT 150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTL 190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK1 950</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK2 580</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>RT 220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTL 280</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK1 740</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK2 680</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>RT 340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTL 430</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK1 840</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTK2 770</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>RT 420</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 9.4: Permissible lubricant quantity for the re-lubrication of standard center parts.

The lubricant quantities, which is specified in Tab. 9.4, page 64 relate to the center part and have to be divided by the number of lubricant nipples.

9.5 Main overhaul

Performing of the main overhaul requires specialized knowledge. We recommend having the manufacturer's specialized personnel perform the main overhaul.

- Please contact the manufacturer.

The screw plugs (6) are necessary for the overhaul of the universal joint shaft.

- Do not loosen the screw plugs (6) (Fig. 6.3, page 44).

9.6 Life span of ATEX universal joint shafts

ATEX-certified universal joint shafts must be sent back for main overhaul after expiration of the calculated life span (see drawing in the system documentation), at the longest after 5 years. The date for the next main overhaul is on the nameplate (Chapter 3.1, page 22).
10 Removal

During removal of the universal joint shaft:

- Heed additional documentation: (Chapter 1.3, page 8).
- Prevent sliding apart of the telescopic length part.
- Prevent a tipping over of the flange yoke when loosening the flange connection.

Only remove universal joint shaft in areas not subject to explosion (atmosphere).

⚠️ DANGER

For specially-designed universal joint shafts, improper installation and removal can cause severe injuries or even death.

- Heed and if necessary request additional documentation (Chapter 1.3, page 8).

⚠️ DANGER

Severe to deadly injuries due to rotating parts!

- Secure drive against starting up.
- Keep personnel who are not participating away, e.g. using supervisory personnel, enclosures, fences.

⚠️ DANGER

Severe to deadly injuries due to swinging or falling universal joint shaft!

- Heed common attachment regulations.
- Only lift universal joint shaft at the prescribed attachment points (Fig. 4.1, page 32).
- Do not attach universal joint shaft in marked area (Fig. 4.1, page 32).
- Only use sufficiently dimensioned and tested lifting appliance.
- Secure danger zone under the universal joint shaft against entry.
- Wear safety helmet, safety shoes, gloves, safety glasses, and fall protection.
DANGER

In case of telescopic lengths: Severe to deadly injuries due to falling parts!

⇒ Secure telescoping part against being pulled apart, e.g. with a suitable rope.

DANGER

In case of ATEX-certified universal joint shafts: severe to deadly injuries due to spark formation in case of:

- Equipotential bonding
- Impact-like touching of adjacent metal parts
- Slipping screw drivers
- Hammer blows

⇒ Only remove universal joint shaft in areas not subject to explosion (atmosphere).

DANGER

Severe crushing or crushing of limbs due to tipping universal joint!

⇒ Secure universal joints against tipping, e.g. with a suitable rope or wedge.

⇒ Never reach between the universal joint, even if there is a deflection guard present.

DANGER

Severe to deadly injuries due to rolling universal joint shaft!

⇒ Only set universal joint shaft down on suitable bases.

⇒ Secure universal joint shaft against rolling away.
11 Repair

Repairs may only be made by the manufacturer’s service personnel or personnel authorized by the manufacturer.

Only repair universal joint shaft in areas not subject to explosion (atmosphere).

⚠️ DANGER

In case of ATEX-certified universal joint shafts: severe to deadly injuries due to spark formation in case of:

- Equipotential bonding
- Impact-like touching of adjacent metal parts
- Slipping screw drivers
- Hammer blows

⇒ Only repair universal joint shaft in areas not subject to explosion (atmosphere).

Damage

⇒ If there is damage, first determine the cause of the damage and eliminate it.

⇒ To determine the cause of damage, consult service personnel authorized by the manufacturer.

Damage diagnosis

Exact damage diagnosis requires great experience. We recommend that you send the universal joint shaft to the manufacturer unassembled.

You will receive a damage report and a cost suggestion for a repair. You decide whether the repair is worthwhile or whether the universal joint shaft will be replaced. If desired, the manufacturer will handle the disposal of the old universal joint shaft.

Returning

Prepare defective universal joint shafts for returning as follows:

⇒ Secure in a wooden crate with suitable blocking.

⇒ Include a report with details about cause of damage, if known.

12 Disposal

⇒ Dispose of universal joint shaft in accordance with the locally-applicable regulations or send the defective universal joint shaft to the manufacturer.

⇒ Dispose of operating and hazardous materials separately according to the locally-applicable regulations. Heed the manufacturer’s safety data sheets.
13 Declaration of incorporation

We, J.M. Voith SE & Co. KG/VTA
Alexanderstraße 2
89510 Heidenheim

hereby declare that the machine called: High-performance universal joint shaft in the series S,R,CH,E

corresponds insofar as possible given the scope of delivery to the essential health and safety requirements as per Annex I of Directive 2006/42/EC (Machinery Directive).

Other directives and harmonized standards applied, particularly DIN EN ISO 14121, DIN EN ISO 12100-1, DIN EN ISO 12100-2.

Moreover, we declare that relevant technical information for this partly completed machinery has been issued as per Annex VII Part B. We undertake to transmit in response to a reasoned request by the national authorities, relevant technical information on the partly completed machinery.

The method of transmission will be agreed with the national authorities.

You may request the relevant technical information from the person authorized for technical information at J.M. Voith SE & Co. KG/VTA
Mrs. Gudrun Mißlbeck
Alexanderstraße 2
89510 Heidenheim

The partly completed machinery must not be put into service until the final machinery into which it is to be incorporated has been declared in conformity with the provisions of Machinery Directive 2006/42/EC, where appropriate.

Making changes to the machinery, unless J.M. Voith SE & Co. KG/VTA gave their express written approval, is not permitted.

Heidenheim, July 15, 2013

[Signature]

Dr. Jerry Mackel
Manager of the product group
14 Declaration of conformity
For ATEX certified universal joint shafts

We

J.M. Voith SE & Co. KG/VTA
Alexanderstraße 2
89510 Heidenheim

hereby declare that the device,

called: High-performance universal joint shaft

in the series S,R,CH,E in ATEX design

corresponds to the essential health and safety requirements as per Annex II of Directive 94/9/EG

of the Council of the European Community.

Other directives and harmonized standards applied, particularly

EN 13463-1: 2009 EN 13463-5: 2011

The labeling of the device includes the following information:

II 2GD c T3/T4

By Changes to the device, except with express written approval from Voith Turbo this declaration loses its validity.

Heidenheim, July 15, 2013

Dr. Jerry Mackel
Manager of the product group
Index

B
Basic safety information 13
Bolts
 Dimensions 36, 37
 Property class 41

C
Checking
 Axial clearance 58
 Deflection play 59
 W arrangement 47
 Z arrangement 46
Checking the delivery 29
Commissioning 51
Connecting flange
 Dimensions 36

D
Damage 67
Damage diagnosis 67
Declaration of conformity 69
Declaration of incorporation 68
Disposal 67
Documents
 additional 9
 other applicable 8

F
Fixed length universal joint shaft 23
Flange yoke 22

H
Hirth serration
 Additional regulations 49

I
Inspection
 Axial clearance 58
 Deflection play 59
Installation 35
 flange bolted connections 35
 Hirth serration 49
 Paper machines 50
Involute profile 22

J
Joint shaft
 Torque transmission 27, 28

L
Link head 22
Lubricants 61
Lubrication 61
Lubrication intervals 57

M
Main overhaul 64
Maintenance 55
 Intervals 57
Malfunctions
 Remedy 53
Markings 10

O
Operation
 Universal joint shafts 51
Other applicable documents 8

P
Packaging 29
Paper machines
 Additional regulations 50
Personnel
 Duties 17
Preservation 34
Product observation 7
Product safety 13

R
Repairs 67

S
Safety equipment
 Personal 21
Safety information
 Commissioning and operation 19
 Decommissioning 20
 Disposal 20
 Installation 18
 Maintenance work and inspections 20
Operator 15
Personnel 17
Preservation 18
Product safety 13
Proper use 13
Remaining risks 14
Removal 20
Repair 20
Transport 18
Safety instructions
 Personal protective equipment 21
Safety symbols 12
Series 26
Spare parts 21
Staff
 Qualification 16
Storage 33
Symbols 10

T
Target groups 7
Telescopic length 22, 23
 Standard center part 22
 Tripod center part 23
Threaded connections
 Bolted connections 35
 Connecting flange 35
Transport
 Fork lift 30
 Truck/crane 30

U
Universal joint shaft
 Application 25

Installation 35
Lubrication 61
Maintenance 55
Preservation 34
Repair 67
Series 26
Storage 33
Structure 22
W arrangement 25
Z arrangement 25
Unpacking 29
Use
 Improper 13
 Misuse 13
 Proper 13

W
W arrangement 25
Warning 11
Warnings
 Danger levels 11
 Safety symbols 12
Warranty 17

Z
Z arrangement 25